Design and Analysis of Choice Experiments Using R: A Brief Introduction

Hideo Aizaki*1) and Kazushi Nishimura2)

1) National Institute for Rural Engineering, National Agriculture and Food Research Organization, 2-1-6 Kannondai, Tsukuba-city, Ibaraki, 305-8609, Japan
2) National Agricultural Research Center for Kyushu Okinawa Region, National Agriculture and Food Research Organization, 2421 Suya, Koshi-city, Kumamoto, 861-1192, Japan

Abstract

This paper briefly introduces choice experiments using R, which is a language and environment for statistical computing. Choice experiments belong to the family of stated preference methods and are applied to numerous issues in research fields such as marketing science, transportation economics, environmental economics, agricultural economics, or health economics. We explain the process of creating choice sets using the AlgDesign package and the process of statistically analyzing responses using the survival package. Since R is free software, readers of this document may find it easy to apply choice experiments to their research projects.

Key words

choice-based conjoint analysis, design of experiments, factorial design, discrete choice model, conditional logit model, survival package, AlgDesign package

Introduction

This paper, which is a briefly modified English edition of Aizaki and Nishimura (2007), aims to explain the design and analysis of choice experiments using R (R Development Core Team 2006). Choice experiments, also called as choice-based conjoint analysis, choice modeling, or stated choice method, belong to the family of stated preference methods and are applied to numerous issues in research fields such as marketing science, transportation economics, environmental economics, agricultural economics, or health economics (see Louviere et al. 2000, Ryan and Farrar 2000, Bennett and Blamey 2001, Bateman et al. 2002, Hensher et al. 2005). Choice experiments comprise seven steps: characterizing the decision process, identifying and describing the attributes, developing an experimental design, developing the questionnaire, collecting data, estimating model, and interpreting the results of policy analysis or decision support (Champ et al. 2003). However, this paper only describes a method for developing an experimental design (designing choice sets) and estimating model (statistically analyzing responses) using R. Detailed descriptions of the other steps and practical techniques for choice experiments are referred to in the abovementioned books or papers. R and its packages that are used in this paper are supposed to be downloaded from the official web site of R (The R Project for Statistical Computing <http://www.r-project.org/> and installed onto your personal computer. Readers who are not familiar with R should refer to web sites, books, or documents related to R (a list of publications is displayed on the web site).

Creating choice sets using the AlgDesign package

Attributes, levels, and question

Following the hypothetical example of consumers’ valuation of milk, which is based on previous research (Sawada et al. 2002, Iwamoto et al. 2003), we explain the method for designing the choice sets and statistically analyzing the response data for choice experiments using R. Fig. 1 shows an example of a question for choice experiments, wherein respondents are assumed to be asked to select one among three alternatives, including two choices of...
milk and none of the two (i.e., neither milk A nor milk B is preferred). Each type of milk is expressed by three attributes: “HACCP label,” “Eco label,” and “Price per liter.” The HACCP (hazard analysis of critical control points) label indicates that the HACCP system has been used for food safety control during the process of manufacturing milk in a factory. The Eco label shows that the raw milk is produced by cows that are fed by ecological dairy farmers who manage their dairy farms in harmony with the environment. Each of these attributes has two levels: “Yes” or “No.” The price per liter attribute comprises four levels: 145 yen, 150 yen, 155 yen, and 160 yen ($1=approximately 115 yen as of October 2007). Each type of milk is supposed to be the same except for these three attributes.

Respondents are assumed to be asked to answer eight questions, as shown in Fig. 1. Table 1 shows total choice sets, and each line describes the two types of milk (alternatives). For example, line 1 in Table 1 corresponds to question 1 (Fig. 1), and it shows that the respondents can select one among two types of milk in question 1—milk A is characterized by costing 145 yen without both the HACCP and Eco labels and milk B is characterized by costing 160 yen with the HACCP label and without the Eco label.

How to create choice sets

Following the first of four methods explained by Louviere *et al.* (2000, p. 114), the total choice sets can be created through five steps using R (Fig. 2).

Step 1: Creating a full factorial design

A full factorial design with two two-level factors (HACCP label and Eco label) and one four-level factor (price attribute) can be created using the function `gen.factorial()` in the AlgDesign package (Wheeler 2004b). In the full factorial design, two or more attributes (independent variables) are manipulated and all combinations of the levels of each attribute are included. In our case, where there are two two-level attributes and one four-level attribute, the full factorial design comprises sixteen combinations of the levels of each attributes (=2×2×4).

After attaching the AlgDesign package by using the function `library()`, the full factorial design is generated and assigned to an object `ffd` using the function `gen.factorial()` as follows.

```r
> library(AlgDesign)
> ffd <- gen.factorial(c(2,2,4), varNames=c("HAC","ECO","PRI"), factors="all")
> ffd
HAC ECO PRI
1  1  1  1
2  2  1  1
3  1  2  1
4  2  2  1
5  1  1  2
6  2  1  2
7  1  2  2
8  2  2  2
9  1  1  3
10 2  1  3
11 1  2  3
12 2  2  3
13 1  1  4
14 2  1  4
15 1  2  4
16 2  2  4
```

Step 2: The function `optFederov()` included in the AlgDesign package (Wheeler 2004b) is used for generating a fractional factorial design ((mixed) orthogonal array) from the full factorial design.

Step 3: Making M-1 copies of the fractional factorial design.

Step 4: In order to create a choice set with M alternatives, randomly select one of the alternatives (rows) from each of the M sets of the fractional factorial design without replacement. Repeat this step until all alternatives in each of the M sets of the fractional factorial design are assigned to P choice sets.

Step 5: Translating the design codes in the choice sets into codes with a unique and corresponding level, and then adding the none-of-these option to each choice set optionally.
The function `gen.factorial()` has three arguments: `c()`, `varNames`, and `factors`. The argument `c()` in the function is used for setting the attributes and levels included in a full factorial design. In order to construct a full factorial design having two two-level attributes and one four-level attribute, the argument `c()` is assigned values of 2, 2, and 4. If a full factorial design with three two-level attributes, two four-level attributes, and one six-level attribute needs to be created, the argument `c()` will be `c(2,2,2,4,4,6)`.

The argument `varNames` is used for assigning the names of the attributes to each column in the full factorial design. Here, the first, second, and third columns are called `HAC` (HACCP label attribute with two levels), `ECO` (Eco label attribute with two levels), and `PRI` (price attribute with four levels), respectively. The last argument `factors="all"` indicates that all attributes are factors. There is normally no need to modify this argument as long as the steps described in this paper are followed.

Executing the abovementioned command creates the full factorial design with two two-level attributes and one four-level attribute, and the design is assigned to the object `ffd`. The name of the object (`ffd`), which can be arbitrarily decided, lists the elements of the object. We find that the full factorial design comprises sixteen rows.

Fig. 2 Steps followed in constructing choice sets
Step 2: Generating a fractional factorial design

Consider that we have to create a half-fractional factorial design where the number of rows of the full factorial design is reduced from sixteen to eight. The function `optFederov()` generates the fractional factorial design from the full factorial design, which is then assigned to an object `des`, after arbitrarily setting the random seed by using the function `set.seed()` as follows.

```r
> set.seed(54321)
> des <- optFederov(~., ffd, 8)
> des
$D
[1] 0.25
$A
[1] 6.333333
$Ge
[1] 1
$Dea
[1] 1
$design
  HAC  ECO  PRI
10  2 1 3
11  1 2 3
14  2 1 4
15  1 2 4
$rows
[1] 1 4 5 8 10 11 14 15
```

The function `optFederov()` has three arguments: `~.` , `ffd`, and `8`. The argument `~.` implies that all data variables are used linearly and their names are used in a model. The argument `ffd` indicates the name of data containing the candidate list, which is the same as the name of the object containing the full factorial design created above. The argument `8` indicates the number of rows (alternatives) in the fractional factorial design.

The object `des` contains some objects (elements) as a result of the function `optFederov()`. The fractional factorial design that is required below and is called `design` in the object `des` is assigned to an object `alt1` from the object `des` by a notation `$`, which is used to access an element of the object, as follows.

```r
> alt1 <- des$design
> alt1
  HAC  ECO  PRI
1 1 1 1
4 2 2 1
5 1 1 2
8 2 2 2
10 2 1 3
11 1 2 3
14 2 1 4
15 1 2 4
```

Step 3: Making copies of the fractional factorial design

M-1 copies of the fractional factorial design created in step 2 are made. Since two packs of milk are shown for each question in the choice experiments (M=2), a copy of the fractional factorial design must be made. The copy is created in an object `alt2` using the operator `<-` in the following manner.

```r
> alt2 <- alt1
> alt2
  HAC  ECO  PRI
1 1 1 1
4 2 2 1
5 1 1 2
8 2 2 2
10 2 1 3
11 1 2 3
14 2 1 4
15 1 2 4
```

If two or more copies of the fractional factorial design are required, the names of the objects containing these copies must be different from each other.

Step 4: Creating choice sets by using random selection without replacement

We randomly select rows (alternatives) from each of the M fractional factorial designs without replacement, and this selection is repeated until all rows in each of the M sets of the fractional factorial design are assigned to P total choice sets. P is equal to the number of rows in the designs. In R, a different and new uniform random variable is added to every fractional factorial design; then, each design is sorted on the basis of its corresponding random variable.

First, a new uniform random number is added to the object `alt1` as follows.

```r
> alt1 <- transform(alt1, r1=runif(8))
> alt1
  HAC  ECO  PRI  r1
1 1 1 1 0.05374091
4 2 2 1 0.75569340
5 1 1 2 0.15476521
8 2 2 2 0.12866907
```
Design and Analysis of Choice Experiments using R: A Brief Introduction

The command `transform(alt1, r1=runif(8))` implies that a uniform random variable `r1` containing eight values is added to the object `alt1`. The number of values contained in the random variable is equal to the number of rows in the object `alt1`. If the object `alt1` comprises `n` rows, the argument `runif(8)` is changed to `runif(n)`. Similarly, the following command is implemented in order to add another uniform random variable `r2` to the object `alt2`.

```r
> alt2 <- transform(alt2, r2=runif(8))
> alt2

<table>
<thead>
<tr>
<th>HAC</th>
<th>ECO</th>
<th>PRI</th>
<th>r2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.55358492</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0.17772093</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0.97593965</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>0.68168019</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1</td>
<td>0.81742403</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>1</td>
<td>0.02218425</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2</td>
<td>0.49822342</td>
</tr>
</tbody>
</table>
```

If the number of fractional factorial designs is M, the aforementioned command is repeated M times.

Next, each fractional factorial design is sorted on the basis of its corresponding uniform random variable. The following command is executed on the object `alt1` by using the function `order()`.

```r
> alt1_sort <- alt1[order(alt1$r1),]
> alt1_sort

<table>
<thead>
<tr>
<th>HAC</th>
<th>ECO</th>
<th>PRI</th>
<th>r1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.05374091</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1</td>
<td>0.11170085</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>0.12866907</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0.15476521</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>0.23430698</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0.75569340</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2</td>
<td>0.78156383</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>1</td>
<td>0.91222889</td>
</tr>
</tbody>
</table>
```

A similar command is executed on all fractional factorial designs (only `alt2` in our case).

```r
> alt2_sort <- alt2[order(alt2$r2),]
> alt2_sort

<table>
<thead>
<tr>
<th>HAC</th>
<th>ECO</th>
<th>PRI</th>
<th>r2</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>2</td>
<td>1</td>
<td>0.02218425</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0.17772093</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>2</td>
<td>0.49822342</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.55358492</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>0.68168019</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>1</td>
<td>0.72350066</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>2</td>
<td>0.81742403</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0.97593965</td>
</tr>
</tbody>
</table>
```

Each line of the sorted fractional factorial designs (objects `alt1_sort` and `alt2_sort`) corresponds to each question of the choice experiments (the upper side of Fig. 3). For example, the same line of the objects `alt1_sort` and `alt2_sort` shows the combination of the attributes levels of milk A and milk B for the same question, respectively. The first line of the object `alt1_sort` shows the combination of the attributes levels of milk A for question 1, whereas the eighth line of the object corresponds to the same for question 8. Similarly, the first line of the object `alt2_sort` shows the combination of the attributes levels of milk B for question 1, while the eighth line corresponds to the same for question 8. When two or more alternatives having the same combination of attributes levels appear in one question, it is necessary to repeat step 4.

Step 5: Translating the design codes

In step 5, let us translate each design code in the choice sets into each unique and corresponding level (lower side of Fig. 3). Following the relationship between the design codes and levels shown in Table 2, fractional factorial designs shown in the upper side of Fig. 3 are translated to the designs shown in the lower side of Fig. 3 that are equivalent to Table 1.

Analyzing responses using the survival package

Representative component of utility

A conditional logit model, which has been applied in numerous previous researches related to choice experiments, is assumed to be used for the statistical analysis of the responses to the choice experiments questions in our example. This model is based on the random utility theory where a respondent’s utility is divided into two components: a representative (systematic) component and a random component. The representative component of utility for the none-of-these option is normalized to be 0 and that for the two types of milk is assumed to be as follows.

\[V_j = ASC + \beta_H HAC_j + \beta_E ECO_j + \beta_P PRI_j \]

(1)

where \(V_j \) denotes the representative component of utility for milk \(j \) (\(j = A, B \)). \(ASC \) is the alternative specific constant. \(HAC_j \) takes a
value of 1 if milk j was produced by using the HACCP system and 0 otherwise. ECO_j takes a value of 1 if milk j was obtained from ecological dairy farmers and 0 otherwise. PRI_j denotes the price of milk j. β_{H}, β_{E}, and β_{P} are unknown parameters associated with HAC_j, ECO_j, and PRI_j, respectively.

The conditional logit model can be executed by using the function `clogit()` that is included in the survival package (Lumley 2006). Frequently, in order to consider the effects of individual characteristics on the valuation of attributes, the interaction between individual characteristics and attribute variables are included in the model. The following two cases are shown: first, independent variables comprising only attribute variables and second, independent variables comprising attribute variables and individual characteristics.

Creating and reading data set

Suppose that ten consumers responded to the eight questions for the choice experiments (Table 1). For the purpose of simplicity, the sample size is set to be smaller than that in the case of practical choice experiments. The responses data listed in Table 3 have been randomly created.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Design codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAC</td>
<td>No Yes</td>
</tr>
<tr>
<td>ECO</td>
<td>No Yes</td>
</tr>
<tr>
<td>PRI</td>
<td>145 yen 150 yen 155 yen 160 yen</td>
</tr>
</tbody>
</table>

Table 2 Relationship between the design codes and levels in each attribute

<table>
<thead>
<tr>
<th>Respondent</th>
<th>Questiona</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 2 1 3 2 1 1 3 3 1 3</td>
</tr>
<tr>
<td>2</td>
<td>3 3 3 3 2 1 1 3 3 1 3</td>
</tr>
<tr>
<td>3</td>
<td>1 2 3 1 1 1 2 1 3 3 3</td>
</tr>
<tr>
<td>4</td>
<td>3 3 3 1 2 1 1 3 3 1 3</td>
</tr>
<tr>
<td>5</td>
<td>3 2 1 1 3 1 3 3 3 3 3</td>
</tr>
<tr>
<td>6</td>
<td>1 3 3 3 3 3 3 3 3 3 3</td>
</tr>
<tr>
<td>7</td>
<td>3 3 3 1 2 1 1 3 3 3 3</td>
</tr>
<tr>
<td>8</td>
<td>2 2 3 2 2 2 2 2 3 3 3</td>
</tr>
<tr>
<td>9</td>
<td>3 2 2 2 2 2 2 2 3 3 3</td>
</tr>
<tr>
<td>10</td>
<td>3 1 3 3 2 2 2 3 3 3 3</td>
</tr>
</tbody>
</table>

Table 3 10 individuals’ responses to the eight questions for the choice experiments

a A value of 1 implies selecting milk A, 2 implies selecting milk B, and 3 implies selecting the none-of-these option.

Fig. 3 Creating total choice sets (excluding the none-of-these option) from sorted fractional factorial designs

Fig. 4 shows a part of a data set for the function `clogit()`, which is created from Table 1 and Table 3. Each respondent answers eight questions and each question comprises three alternatives, that is, milk A, milk B, and the none-of-these option. Each alternative comprises one row of the data set. Therefore, the data set comprises 240 rows, with 10 blocks (10 individuals) having eight sub-blocks (eight questions) and three rows (three alternatives). For example, the data for respondent 1 are listed from row 2 to row 25, where rows 2, 3, and 4 denote data related to milk A, milk B, and the none-of-these options, respectively, in question 1.

Variable STR in column A is a stratification variable that is used to identify each combination of respondents and questions. The variable is assumed to be as follows.
Design and Analysis of Choice Experiments using R: A Brief Introduction

\[STR = 100 \times N + Q \]
(2)

where variable \(N = 1, 2, 3, \ldots, n \) is the respondent’s identification number and variable \(Q = 1, 2, 3, \ldots, q \) is a question number. Since there are three alternatives to each question (choice situation), the stratification variable takes a different value every three lines in our case. For example, the value of \(STR \) in the case of question 1 for respondent 1 from row 2 to row 4 is 101 \((=100 \times 1+1)\), while the value of \(STR \) in the case of question 8 for respondent 10 from row 239 to row 241 is 1008 \((=100 \times 10+8)\).

Variable \(RES \) in column B is a dummy variable that, at each row, takes the value 1 if the alternative is selected and 0 otherwise. For example, we observe that respondent 1 selected the none-of-these option (third alternative) in the case of question 1 because the variable \(RES \) in row 4 takes a value of 1 and that in both rows 2 and 3 takes a value of 0.

Columns C to F contain independent variables in the conditional logit model. Variable \(ASC \) in column C is an alternative specific constant for each type of milk, A and B. Variable \(HAC \) in column D and variable \(ECO \) in column E represent dummy variables for the HACCP label and Eco label, respectively. Each dummy variable takes a value of 1 if the milk has each label and 0 otherwise. Variable \(PRI \) in column F denotes the price of milk. Each attribute variable of the HACCP label, Eco label, and price corresponding to the none-of-these option takes a value of 0. Because the function \(\text{clogit()} \) does not correspond to a question (choice scenario) format including the none-of-these option, it is necessary to normalize the representative component of utility for the option to be 0.

Suppose the data set file “data1.txt” is saved as a tab delimited file in the directly “c:/test.” The command \(\text{read.delim()} \) can be used to read the data set file and create a data set object called...

Table 1

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>STR</td>
<td>RES</td>
<td>ASC</td>
<td>HAC</td>
<td>ECO</td>
<td>PRI</td>
</tr>
<tr>
<td>2</td>
<td>101</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>3</td>
<td>101</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>102</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>155</td>
</tr>
<tr>
<td>6</td>
<td>102</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>155</td>
</tr>
<tr>
<td>7</td>
<td>102</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>103</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>9</td>
<td>104</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>10</td>
<td>105</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>104</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>104</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>13</td>
<td>104</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>105</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>155</td>
</tr>
<tr>
<td>15</td>
<td>105</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>150</td>
</tr>
<tr>
<td>16</td>
<td>105</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>106</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>145</td>
</tr>
<tr>
<td>18</td>
<td>106</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>19</td>
<td>106</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>107</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>160</td>
</tr>
<tr>
<td>21</td>
<td>107</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>155</td>
</tr>
<tr>
<td>22</td>
<td>107</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>108</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>24</td>
<td>108</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>25</td>
<td>108</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>201</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>145</td>
</tr>
<tr>
<td>27</td>
<td>201</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>28</td>
<td>201</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>201</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>155</td>
</tr>
<tr>
<td>30</td>
<td>207</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>155</td>
</tr>
<tr>
<td>31</td>
<td>207</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>208</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>160</td>
</tr>
<tr>
<td>33</td>
<td>208</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>34</td>
<td>208</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>209</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>155</td>
</tr>
</tbody>
</table>

Fig. 4 A part of a data set for the function \(\text{clogit()} \).
data1 in R as follows.

```r
> data1 <- read.delim("c:/test/data1.txt")
```

Applying the conditional logit model

The conditional logit model can be applied by using the function `clogit()` included in the survival package in R. After attaching the survival package, the function `clogit()` is executed as follows.

```r
> library(survival)
> clogout1 <- clogit(RES~ASC+HAC+ECO+PRI+strata(STR),data=data1)
> clogout1
```

```
Call:
clogit(RES ~ ASC + HAC + ECO + PRI + strata(STR), data = data1)

coef  exp(coef) se(coef)  z  p
ASC   12.6659 3.17e+05  5.2041 2.434 0.015
HAC    0.8378  2.31e+00  0.4087 2.050 0.040
ECO    0.3972  1.49e+00  0.4308 0.922 0.360
PRI   -0.0918  9.12e-01  0.0342 -2.686 0.007
Likelihood ratio test = 22.9 on 4 df, p = 0.00013 n = 240
```

The function `clogit()` has two arguments — the formula for the estimation model and the name of the data set. The formula is assumed to be "RES~ASC+HAC+ECO+PRI+strata(STR)," where the left-hand side of the operator shows the response variable (RES) and the right-hand side shows independent variables (ASC, HAC, ECO, and PRI) and the stratification variable (strata(STR)). This model assumes that the representative component of utility for milk is to be a linear combination of independent variables (see equation (1)). The data set argument is `data1`. The output from the function `clogit()` is assigned to the object `clogout1` that includes some other objects (elements). For example, the output of the function `clogit()` by default does not exhibit a log-likelihood at zero and at convergence. These values are listed by executing the following command.

```r
> clogout1$loglik
[1] -87.88898 -76.41796
```

The output shows that the values of the log-likelihood at zero and that at convergence are -87.88898 and -76.41796, respectively.

Considering the effects of individual characteristics on their valuation

A method for reflecting the respondents’ individual characteristics in the conditional logit model is to use a new variable that multiplies the individual characteristic variable and attribute variables (including ASC). Suppose that the effect of the respondent’s gender on their valuation of the price variable is statistically tested, that is, a new variable PRI:FEM is introduced as one of independent variables, where variable FEM takes a value of 1 if the respondent is a female and 0 otherwise. The representative component of utility for milk considering the effect of the variable FEM on the variable PRI is as follows.

\[V_j = ASC + \beta_{HAC}HAC + \beta_{ECO}ECO + \beta_{PRI}PRI + \beta_{PRI:FEM}PRI:FEM \]

where \(\beta_{PRI:FEM} \) is the coefficient for the variable PRI:FEM. An interaction between two variables in formula is expressed by using the operation :. That is, PRI:FEM. A data set (data2) for this model is made from Table 1 and Table 4 that has been randomly created. The conditional logit model can be estimated as follows.

```r
> clogout2 <-
clogit(RES~ASC+HAC+ECO+PRI+PRI:FEM+strata(STR),data=data2)
> clogout2
Call:
clogit(RES ~ ASC + HAC + ECO + PRI + PRI:FEM + strata(STR), data = data2)

coef  exp(coef) se(coef)  z  p
ASC    9.8150 1.83e+04  5.6891 1.725 0.084
HAC    0.8449 2.33e+00  0.4308 1.925 0.054
ECO    0.4720 1.60e+00  0.4566 1.034 0.303
PRI   -0.0753  9.27e-01  0.0373 -2.022 0.043
PRI:FEM -0.0021  9.98e-01  0.0031 -0.697 0.490
Likelihood ratio test = 34.5 on 5 df, p = 1.87e-06 n = 240
```

Considering the effects of individual characteristics on their valuation

A method for reflecting the respondents’ individual characteristics in the conditional logit model is to use a new variable that multiplies the individual characteristic variable and attribute variables (including ASC). Suppose that the effect of the respondent’s gender on their valuation of the price variable is statistically tested, that is, a new variable PRI:FEM is introduced as one of independent variables, where variable FEM takes a value of 1 if the respondent is a female and 0 otherwise. The representative component of utility for milk considering the effect of the variable FEM on the variable PRI is as follows.

\[V_j = ASC + \beta_{HAC}HAC + \beta_{ECO}ECO + \beta_{PRI}PRI + \beta_{PRI:FEM}PRI:FEM \]

where \(\beta_{PRI:FEM} \) is the coefficient for the variable PRI:FEM. An interaction between two variables in formula is expressed by using the operation :. That is, PRI:FEM. A data set (data2) for this model is made from Table 1 and Table 4 that has been randomly created. The conditional logit model can be estimated as follows.

```r
> clogout2 <-
clogit(RES~ASC+HAC+ECO+PRI+PRI:FEM+strata(STR),data=data2)
> clogout2
Call:
clogit(RES ~ ASC + HAC + ECO + PRI + PRI:FEM + strata(STR), data = data2)
```

<table>
<thead>
<tr>
<th>Respondent</th>
<th>Questiona</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>FEMb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

a A value of 1 implies selecting milk A, 2 implies selecting milk B, and 3 implies selecting the none-of-these alternative.

b A value of 1 implies the respondent is a female and 0 otherwise.
it is not significant (p=0.490), implying that the estimated coefficient of the variable PRI for females is not statistically different from that for males.

Conclusion

This paper briefly illustrates a method for designing choice sets and statistically analyzing the responses for choice experiments using R. Readers who are interested in both choice experiments and R can attempt other methods of design and analysis using R.

References

Received December 3, 2007
Accepted March 20, 2008