From: John Fox <jfox_at_mcmaster.ca>

Date: Mon 22 Jan 2007 - 16:36:00 GMT

R-help@stat.math.ethz.ch mailing list

https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. Received on Tue Jan 23 03:51:12 2007

Date: Mon 22 Jan 2007 - 16:36:00 GMT

Dear Brian,

> -----Original Message-----

*> From: r-help-bounces@stat.math.ethz.ch
**> [mailto:r-help-bounces@stat.math.ethz.ch] On Behalf Of Prof
**> Brian Ripley
**> Sent: Monday, January 22, 2007 11:06 AM
**> To: Charilaos Skiadas
**> Cc: John Fox; r-help@stat.math.ethz.ch
**> Subject: Re: [R] efficient code. how to reduce running time?
**>
**> On Mon, 22 Jan 2007, Charilaos Skiadas wrote:
**>
**> > On Jan 21, 2007, at 8:11 PM, John Fox wrote:
**> >
**> >> Dear Haris,
**> >>
**> >> Using lapply() et al. may produce cleaner code, but it won't
**> >> necessarily speed up a computation. For example:
**> >>
**> >>> X <- data.frame(matrix(rnorm(1000*1000), 1000, 1000)) y <-
**> >>> rnorm(1000)
**> >>>
**> >>> mods <- as.list(1:1000)
**> >>> system.time(for (i in 1:1000) mods[[i]] <- lm(y ~ X[,i]))
**> >> [1] 40.53 0.05 40.61 NA NA
**> >>>
**> >>> system.time(mods <- lapply(as.list(X), function(x) lm(y ~ x)))
**> >> [1] 53.29 0.37 53.94 NA NA
**> >>
**> > Interesting, in my system the results are quite different:
**> >
**> > > system.time(for (i in 1:1000) mods[[i]] <- lm(y ~ X[,i]))
**> > [1] 192.035 12.601 797.094 0.000 0.000
**> > > system.time(mods <- lapply(as.list(X), function(x) lm(y ~ x)))
**> > [1] 59.913 9.918 289.030 0.000 0.000
**> >
**> > Regular MacOSX install with ~760MB memory.
**>
**> But MacOS X is infamous for having rather specific speed
**> problems with its malloc, and so gives different timing
**> results from all other platforms.
**> We are promised a solution in MacOS 10.5.
**>
*

Thanks for the clarification.

> Both of your machines seem very slow compared to mine:

*>
**> > system.time(for (i in 1:1000) mods[[i]] <- lm(y ~ X[,i]))
**> user system elapsed
**> 11.011 0.250 11.311
**> > system.time(mods <- lapply(as.list(X), function(x) lm(y ~ x)))
**> user system elapsed
**> 13.463 0.260 13.812
**>
**> and that on a 64-bit platform (AMD64 Linux FC5).
**>
*

As you can see from the specs (in a previous message), my system is quite old, which probably accounts for at least part of the difference. The ratios of the user times for my and your system aren't too different though:

> 53.29/40.53 # mine

[1] 1.314829

> 13.463/11.011 # yours

[1] 1.222686

Regards,

John

*> --
*

> Brian D. Ripley, ripley@stats.ox.ac.uk

*> Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/
**> University of Oxford, Tel: +44 1865 272861 (self)
**> 1 South Parks Road, +44 1865 272866 (PA)
**> Oxford OX1 3TG, UK Fax: +44 1865 272595
**>
**> ______________________________________________
**> R-help@stat.math.ethz.ch mailing list
**> https://stat.ethz.ch/mailman/listinfo/r-help
**> PLEASE do read the posting guide
**> http://www.R-project.org/posting-guide.html
**> and provide commented, minimal, self-contained, reproducible code.
*

R-help@stat.math.ethz.ch mailing list

https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. Received on Tue Jan 23 03:51:12 2007

Archive maintained by Robert King, hosted by
the discipline of
statistics at the
University of Newcastle,
Australia.

Archive generated by hypermail 2.1.8, at Mon 22 Jan 2007 - 17:30:32 GMT.

*
Mailing list information is available at https://stat.ethz.ch/mailman/listinfo/r-help.
Please read the posting
guide before posting to the list.
*