[R] SAS to R - if you have SAS 8.2+

From: Gyula Gulyas <gygulyas_at_yahoo.ca>
Date: Thu, 27 Dec 2007 15:25:09 -0800 (PST)

Hi there,

the attached R function uses the SAS Integrated Object Model (IOM) and it can deal with SAS dates and long variable names. All you need to provide is the folder where the SAS data file is and the data file name without the extension. The function requires the rcom package.

This is meant to be first cut...but improvements and suggestions are more than welcome!


 import.sas.data <-
# Function to read in a SAS data file
# Packages needed: rcom
# inPath: path to SAS file
# inSAS: SAS data file name (no extension)
# as.is: as per read.csv (FALSE - force all character
variables to be factors)
# outputs a data.frame object
# Created: December 1, 2007
# Modified: December 4, 2007
# Author: Gyula Gulyas (gyula.gulyas_at_timberline.ca)
# Use as is, no guarantees, liability due to data
loss is limited to the price you paid for this function...  


# check if user has closing slash in path and fix it
if needed
 inPath <- sub("/$","",inPath)

 obWSM <-
comCreateObject("SASWorkspaceManager.WorkspaceManager")  obWSM.Workspaces <- obWSM[["Workspaces"]]  obSAS <- comCreateObject("SAS.Workspace")  obSAS.DataService <- obSAS[["DataService"]]  obSAS.LanguageService <- obSAS[["LanguageService"]]

# hard-coded temporary files
# sas temporary csv file

 csvdata <- paste(inPath,"/t__sd__t.csv", sep="")
# sas temporary column definition file
 coldef <- paste(inPath,"/t__sc__t.csv", sep="")  

 libRef <-

# create the content csv file

 cont1 <- paste("proc contents data=sasds.",inSAS," out=_tmp1(KEEP=NAME TYPE LENGTH VARNUM FORMAT) noprint; run;",sep="")
 cont2 <- "proc sort data=_tmp1; by varnum; run;"  cont3 <- "data _tmp2; set _tmp1; if type=2 then dummy='character'; "
 cont3 <- paste(cont3,"if type=1 then do; if format in ('DATE','DATETIME') then dummy='date'; ",sep="")  cont3 <- paste(cont3,"else dummy='numeric'; end; run;",sep="")
 cont4 <- "proc transpose data=_tmp2
out=_tmp3(DROP=_NAME_); id name; var dummy; run;"  cont5 <- paste("proc export data=_tmp3
outfile='",coldef,"' dbms=csv; run;",sep="")


# column definitions, all as characters
 scf <- read.csv(coldef,as.is=T)

 sasline1 <- paste("data _tmp4; set sasds.", inSAS, "; run;",sep="")


 sasline2 <- paste("proc export data=_tmp4 outfile='",csvdata,"' dbms=csv; run;",sep="")


 sdf <- read.csv(csvdata,as.is=as.is)

# delete old csvdata file

# delete old coldef file


# convert SAS DATETIME format into native R date
 x <- which(scf=="date")
 sdf[,x] <- as.data.frame(strptime(sdf[,x], "%d%b%Y:%H:%M:%S"))

# cleanup SAS objects

 obSAS.UniqueIdentifier <- obSAS[["UniqueIdentifier"]]

obWSM.Workspaces$RemoveWorkspaceByUUID(obSAS.UniqueIdentifier)  obSAS$Close()



# example call
# not run
# test<- import.sas.data("path/to/data","sasdatafile")

Looking for last minute shopping deals?

R-help_at_r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. Received on Fri 28 Dec 2007 - 19:58:01 GMT

Archive maintained by Robert King, hosted by the discipline of statistics at the University of Newcastle, Australia.
Archive generated by hypermail 2.2.0, at Fri 28 Dec 2007 - 20:30:21 GMT.

Mailing list information is available at https://stat.ethz.ch/mailman/listinfo/r-help. Please read the posting guide before posting to the list.