From: Jorge Ivan Velez <jorgeivanvelez_at_gmail.com>

Date: Tue, 03 Jun 2008 17:09:22 -0400

# Constants

m=0.4795

s=0.4795

# Functions to estimate f_i-k_i

d3=d[3]

d4=d[4]

res=2*d1+2*sqrt(2)*d1*d2+2*sqrt(3)*d2*d3+4*d3*d4-l*m*(1+d1^2+d2^2+d3^2+d4^2) res

*}
*

res=2*sqrt(2)*d2+2*d1^2+2*sqrt(6)*d1*d3+4*d2^2+4*sqrt(3)*d2*d4+6*d3^2+8*d4^2-l*(m^2+m^3*s^(-1))*(1+d1^2+d2^2+d3^2+d4^2) res

*}
*

res=6*d1+12*sqrt(2)*d1*d2+18*sqrt(3)*d2*d3+48*d3*d4+2*sqrt(6)*d3+4*sqrt(6)*d1*d4-l*(m^3+3*m^4*s^(-1)+3*m^6*s^(-2))*(1+d1^2+d2^2+d3^2+d4^2) res

*}
*

res=12*sqrt(2)*d2+12*d1^2+36*d2^2+72*d3^2+120*d4^2+20*sqrt(6)*d1*d3+56*sqrt(3)*d2*d4+4*sqrt(6)*d4-l*((m^4+6*m^6*s^(-1)+15*m^6*s^(-2)+15*m^7*s^(-3))-3*l^(2)*(m^2+m^3*s^(-1))^2)*(1+d1^2+d2^2+d3^2+d4^2) res

*}
*

R-help_at_r-project.org mailing list

https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. Received on Tue 03 Jun 2008 - 22:05:38 GMT

Date: Tue, 03 Jun 2008 17:09:22 -0400

Dear R-list members,

I've had a hard time trying to solve a non-linear system (nls) of equations which structure for the equation i, i=1,...,4, is as follows:

f_i(d_1,d_2,d_3,d_4)-k_i(l,m,s) = 0 (1)

In the expression above, both f_i and k_i are known functions and l, m and s are known constants. I would like to estimate the vector d=(d_1,d_2,d_3,d_4) which is solution of (1). Functions in R to estimate f_i-k_i are at the end of this message.

Any help/suggestions/comments would be greatly appreciated.

Thanks in advance,

Jorge

# ------------------------------

# Constants

# ------------------------------ l=1

m=0.4795

s=0.4795

# ------------------------------

# Functions to estimate f_i-k_i

# ------------------------------ f1=function(d){ d1=d[1] d2=d[2]

d3=d[3]

d4=d[4]

res=2*d1+2*sqrt(2)*d1*d2+2*sqrt(3)*d2*d3+4*d3*d4-l*m*(1+d1^2+d2^2+d3^2+d4^2) res

f2=function(d){ d1=d[1] d2=d[2] d3=d[3] d4=d[4]

res=2*sqrt(2)*d2+2*d1^2+2*sqrt(6)*d1*d3+4*d2^2+4*sqrt(3)*d2*d4+6*d3^2+8*d4^2-l*(m^2+m^3*s^(-1))*(1+d1^2+d2^2+d3^2+d4^2) res

f3=function(d){ d1=d[1] d2=d[2] d3=d[3] d4=d[4]

res=6*d1+12*sqrt(2)*d1*d2+18*sqrt(3)*d2*d3+48*d3*d4+2*sqrt(6)*d3+4*sqrt(6)*d1*d4-l*(m^3+3*m^4*s^(-1)+3*m^6*s^(-2))*(1+d1^2+d2^2+d3^2+d4^2) res

f4=function(d){ d1=d[1] d2=d[2] d3=d[3] d4=d[4]

res=12*sqrt(2)*d2+12*d1^2+36*d2^2+72*d3^2+120*d4^2+20*sqrt(6)*d1*d3+56*sqrt(3)*d2*d4+4*sqrt(6)*d4-l*((m^4+6*m^6*s^(-1)+15*m^6*s^(-2)+15*m^7*s^(-3))-3*l^(2)*(m^2+m^3*s^(-1))^2)*(1+d1^2+d2^2+d3^2+d4^2) res

[[alternative HTML version deleted]]

R-help_at_r-project.org mailing list

https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. Received on Tue 03 Jun 2008 - 22:05:38 GMT

Archive maintained by Robert King, hosted by
the discipline of
statistics at the
University of Newcastle,
Australia.

Archive generated by hypermail 2.2.0, at Wed 04 Jun 2008 - 20:31:19 GMT.

*
Mailing list information is available at https://stat.ethz.ch/mailman/listinfo/r-help.
Please read the posting
guide before posting to the list.
*