[R] need an R-squared from a nls logistic sigmoid fit

From: James Salsman <james_at_bovik.org>
Date: Mon 06 Jun 2005 - 09:49:41 EST

Why doesn't nls() produce any kind of R-squared value? In the absence of such information, how are we supposed to compare one fit to another when the y-axis scale changes?

> sm <- nls(y ~ SSfpl(x, miny, maxy, midx, grad))
> summary(sm)

Formula: y ~ SSfpl(x, miny, maxy, midx, grad)

Parameters:

      Estimate Std. Error t value Pr(>|t|)
miny  -0.5845     4.6104  -0.127  0.90524
maxy   7.2680     1.5512   4.686  0.00941 **
midx  16.9187     2.2340   7.573  0.00163 **
grad   1.7283     1.9150   0.903  0.41782
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 1.13 on 4 degrees of freedom

Correlation of Parameter Estimates:
         miny    maxy    midx
maxy -0.6654
midx  0.8936 -0.3221
grad -0.9068  0.8477 -0.6865


>
______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
Received on Mon Jun 06 09:56:40 2005

This archive was generated by hypermail 2.1.8 : Fri 03 Mar 2006 - 03:32:22 EST